Biochars and Green Waste Compost for the Immobilisation of Cu in Contaminated Soil - HOMBRE/ Greenland Joint Project

Sarah Jones, Paul Bardos,
 r3 Environmental Technology, UK; Petra Kidd, IIAG-CSIC, Spain;
 Pierre Menger, Tecnalia, Spain; Michel Mench, University of Bordeaux, France; Wolfgang Friesl-Hanl, Gerhard Soja, AIT, Austria;
 Tony Hutchings, Frans de Leij, C-Cure Solutions, UK.
Presentation Overview

- Project Background and Aims
- Amendments and Analyses
- Results
- Discussion + Conclusions
Project Background

- Collaborative undertaking between two EU projects: HOMBRE and Greenland

- **HOMBRE (Holistic Management of Brownfield Remediation)**
 Task 5.4 /Deliverable 5.4 – Technology development: operating window investigation for two low input technologies for greening urban brownfield.

- **Greenland – Gentle Remediation Options**
 TASK 4.3/Deliverable 4.27 - Use of amendments for reducing TE bioavailability (phytostabilisation)

- Two supporting MSc projects (University of Reading)
 Not reported here
Site

- Former wood-preservation site in South-West France
- Heavily Cu contaminated (also PAH).
- Low OM
- Spatial variability of contamination
Aims

- Evaluate the potential of biochar and GWC as GRO to:
 - Immobilise Cu in soil
 - Aid re-vegetation of contaminated site

- In order to:
 - Assess potential for production of usable biomass for energy on marginal land
 - Add to ongoing work attempting to define operating windows for GRO
 - Assess recycling biomass produced on contaminated sites for further site improvement
Amendments

• Three different biochars trialled:

 • BC1 – a specialised biochar product called “C-Cure-Metal” developed for remediation of metal contaminated substrates (C-Cure Solutions Limited, Farnham, UK)

 • BC2 – Biochar produced using poplar grown at the Biogeco site (AIT, Austria)

 • BC3 – Fe-amended poplar char (AIT, Austria)

• Green Waste Compost
Project Concept

Treatment Regime
- Amendment (biochar, compost)
- Plant Growth

Interacting Influencing Factors
- DOC
- EH
- CEC
- OM
- pH
- N, P, K + micronutrients

Key Impacts
- Cu Availability in Soil
- Leaching to Water Bodies
- Phytotoxicity

Direct influence
Analysis/Activities

- Background analyses (Technalia – total metals, PAH)
- Leach tests – pre incubation, post incubation, post growth
 → Incubation period (14d, wet/dry cycle)
- pH, EH
- DOC
- Plant trials – biomass and metal uptake
Results: Pre Incubation Leaching Tests
Results: Pre Incubation pH & DOC
Results: Pre Incubation EH
Results: Post Incubation Leaching Tests

Leachable Cu mg kg dry soil$^{-1}$

Unamended, BC 1 (1%), BC 2 (1%), BC 3 (1%), BC 1 (3%), BC 2 (3%), BC 3 (3%), C (1%), C (2%), BC 1 (1%) + C (1%), BC 2 (1%) + C (1%), BC 3 (1%) + C (1%), BC 1 (3%) + C (1%), BC 2 (3%) + C (1%), BC 3 (3%) + C (1%), BC 1 (1%) + C (2%), BC 2 (1%) + C (2%), BC 3 (1%) + C (2%), BC 1 (3%) + C (2%), BC 2 (3%) + C (2%), BC 3 (3%) + C (2%)
Results: Post Incubation pH & DOC
Results: Post Incubation EH
Results: Post Growth Leaching Tests

Leachable Cu mg/kg dry soil$^{-1}$

(Pre-growth)
Results: Post Growth pH & DOC
Post Growth EH
Leaching Tests: BC1 (C-Cure)

Pre-incubation

Post-incubation

Post-growth
Leaching Tests: BC2 (poplar)
Leaching Tests: BC3 - (poplar+Fe)
Plant Growth – at 7 weeks
Results: Above Ground Dry Biomass

Dry biomass (g)
Result: Plant Growth
Result: Plant Growth

BC1 (3%) + c (2%)

Unamended
Results: Metal uptake

mg Cu Kg dry biomass\(^{-1}\)

Unamended BC 1 (1%) BC 2 (1%) BC 3 (1%) BC 2 (3%) BC 3 (3%) C (1%) C (2%) BC 1 (1%) + C (1%) BC 2 (1%) + C (1%) BC 3 (1%) + C (1%) BC 1 (3%) + C (1%) BC 2 (3%) + C (1%) BC 3 (3%) + C (1%) BC 1 (1%) + C (2%) BC 2 (1%) + C (2%) BC 3 (1%) + C (2%) BC 1 (3%) + C (2%) BC 2 (3%) + C (2%) BC 3 (3%) + C (2%)

Leaf Stem
Discussion + Conclusions

• BC1 overall reduced leachable Cu before growth (clear distinctions between treatments and controls; less obvious after the growth period)

• BC1 increased plant growth most significantly

• Generally, higher application rates and combination with compost improved results for all biochars for both phytotoxicity and leachable Cu reduction

• Discussion point: dramatic reduction in leachable Cu post growth – where has the leachable Cu gone?
 – Leached from soil?
 – Taken up by plants?
 – Changed to a less available form? If so, what were the determining factors?
Acknowledgements

This project received funding from the European Union Seventh Framework Programme (FP7 / 2007-2013) under Grant Agreement No. 265097.

This presentation reflects only the author’s views and that the European Union is not liable for any use that may be made of the information contained therein.

Greenland: Under Grant Agreements No. 265097 and No. 266124
Thank You

• Contact:
 – Sarah Jones, sarah@r3environmental.co.uk, www.r3environmental.com
 – Paul Bardos, paul@r3environmental.co.uk, www.r3environmental.com
 – Petra Kidd, pkidd@iiag.csic.es, www.iiag.csic.es
 – Pierre Menger, pierre.menger@tecnalia.com, www.tecnalia.com